Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Bali Journal of Anesthesiology ; 6(2):125-126, 2022.
Article in English | EMBASE | ID: covidwho-20244660
2.
Journal of Biological Chemistry ; 299(3 Supplement):S396-S397, 2023.
Article in English | EMBASE | ID: covidwho-20243840

ABSTRACT

Objective: Immunohistochemistry of post-mortem lung tissue from Covid-19 patients with diffuse alveolar damage demonstrated marked increases in chondroitin sulfate and CHST15 and decline in N-acetylgalactosamine-4-sulfatase. Studies were undertaken to identify the mechanisms involved in these effects. Method(s): Human primary small airway epithelial cells (PCS 301-010;ATCC) were cultured and exposed to the SARSCoV- 2 spike protein receptor binding domain (SPRBD;AA: Lys310-Leu560;Amsbio). Expression of the spike protein receptor, angiotensin converting enzyme 2 (ACE2), was enhanced by treatment with Interferon-beta. Promoter activation, DNA-binding, RNA silencing, QPCR, Western blots, ELISAs, and specific enzyme inhibitors were used to elucidate the underlying molecular mechanisms. Result(s): Treatment of the cultured cells by the SPRBD led to increased CHST15 and CHST11 expression and decline in ARSB expression. Sulfotransferase activity, total chondroitin sulfate, and sulfated glycosaminoglycan (GAG) content were increased. Phospho-T180/T182-p38-MAPK and phospho- S423/S425-Smad3 were required for the activation of the CHST15 and CHST11 promoters. Inhibition by SB203580, a phospho-p38 MAPK inhibitor, and by SIS3, a Smad3 inhibitor, blocked the CHST15 and CHST11 promoter activation. SB203580 reversed the SPRBD-induced decline in ARSB expression, but SIS3 had no effect on ARSB expression or promoter activation. Phospho-p38 MAPK was shown to reduce retinoblastoma protein (RB) S807/S811 phosphorylation and increase RB S249/T252 phosphorylation. E2F-DNA binding declined following exposure to SPRBD, and SB203580 reversed this effect. This indicates a mechanism by which SPRBD, phospho-p38 MAPK, E2F, and RB can regulate ARSB expression and thereby impact on chondroitin 4-sulfate and dermatan sulfate and molecules that bind to these sulfated GAGs, including Interleukin-8, bone morphogenetic protein-4, galectin-3 and SHP-2 (Src homology region 2-containing protein tyrosine phosphatase 2). Conclusion(s): The enzyme ARSB is required for the degradation of chondroitin 4-sulfate and dermatan sulfate, and accumulation of these sulfated GAGs can contribute to lung pathophysiology, as evident in Covid-19. Some effects of the SPRBD may be attributable to unopposed Angiotensin II, when Ang1-7 counter effects are diminished due to binding of ACE2 with the SARS-CoV-2 spike protein and reduced production of Ang1-7. Aberrant cell signaling and activation of the phospho-p38 MAPK and Smad3 pathways increase CHST15 and CHST11 production, which can contribute to increased chondroitin sulfate in infected cells. Decline in ARSB may occur as a consequence of effects of phospho-p38 MAPK on RB phosphorylation and E2F1 availability. Decline in ARSB and the resulting impaired degradation of sulfated GAGs have profound consequences on cellular metabolic, signaling, and transcriptional events. Funding is VA Merit Award.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

3.
Nevrologiya, Neiropsikhiatriya, Psikhosomatika ; 14(6):89-97, 2022.
Article in Russian | EMBASE | ID: covidwho-20238049

ABSTRACT

In elderly patients with COVID-19 cognitive functions decline;it has been suggested that SARS-CoV-2 infection may lead to the development of Alzheimer's disease (AD) and other long-term neurological consequences. We review several parallels between AD and COVID-19 in terms of pathogenetic mechanisms and risk factors. Possible mechanisms through which COVID-19 can initiate AD are discussed. These include systemic inflammation, hyperactivation of the renin-angiotensin system, innate immune activation, oxidative stress, and direct viral damage. It has been shown that increased expression of angiotensin-renin receptors (ACE2) may be a risk factor for COVID-19 in patients with AD. When entering the central nervous system, the SARS-CoV-2 virus can directly activate glial cell-mediated immune responses, which in turn can lead to the accumulation of beta-amyloid and the subsequent onset or progression of current AD. The involvement of inflammatory biomarkers, including interleukins (IL): IL6, IL1, as well as galectin-3, as a link between COVID-19 and AD is discussed. The rationale for the use of memantine (akatinol memantine) in patients with COVID-19 in order to prevent the development of cognitive deficits is discussed. Memantine has been shown to have a positive effect on neuroinflammatory processes in the onset or exacerbation of cognitive deficits, in reducing cerebral vasospasm and endothelial dysfunction in viral infections. Memantine therapy may improve everyday activity and reduce the risk of severe SARS-CoV-2 infection.Copyright © 2022 Ima-Press Publishing House. All rights reserved.

4.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20243310

ABSTRACT

Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.


Subject(s)
COVID-19 , Virus Diseases , Humans , Galectin 3/metabolism , SARS-CoV-2/metabolism , Galectins/metabolism , Virus Diseases/metabolism , Inflammation , Host-Pathogen Interactions
5.
Nevrologiya, Neiropsikhiatriya, Psikhosomatika ; 14(6):89-97, 2022.
Article in Russian | EMBASE | ID: covidwho-2324154

ABSTRACT

In elderly patients with COVID-19 cognitive functions decline;it has been suggested that SARS-CoV-2 infection may lead to the development of Alzheimer's disease (AD) and other long-term neurological consequences. We review several parallels between AD and COVID-19 in terms of pathogenetic mechanisms and risk factors. Possible mechanisms through which COVID-19 can initiate AD are discussed. These include systemic inflammation, hyperactivation of the renin-angiotensin system, innate immune activation, oxidative stress, and direct viral damage. It has been shown that increased expression of angiotensin-renin receptors (ACE2) may be a risk factor for COVID-19 in patients with AD. When entering the central nervous system, the SARS-CoV-2 virus can directly activate glial cell-mediated immune responses, which in turn can lead to the accumulation of beta-amyloid and the subsequent onset or progression of current AD. The involvement of inflammatory biomarkers, including interleukins (IL): IL6, IL1, as well as galectin-3, as a link between COVID-19 and AD is discussed. The rationale for the use of memantine (akatinol memantine) in patients with COVID-19 in order to prevent the development of cognitive deficits is discussed. Memantine has been shown to have a positive effect on neuroinflammatory processes in the onset or exacerbation of cognitive deficits, in reducing cerebral vasospasm and endothelial dysfunction in viral infections. Memantine therapy may improve everyday activity and reduce the risk of severe SARS-CoV-2 infection.Copyright © 2022 Ima-Press Publishing House. All rights reserved.

6.
Nevrologiya, Neiropsikhiatriya, Psikhosomatika ; 14(6):89-97, 2022.
Article in Russian | EMBASE | ID: covidwho-2316157

ABSTRACT

In elderly patients with COVID-19 cognitive functions decline;it has been suggested that SARS-CoV-2 infection may lead to the development of Alzheimer's disease (AD) and other long-term neurological consequences. We review several parallels between AD and COVID-19 in terms of pathogenetic mechanisms and risk factors. Possible mechanisms through which COVID-19 can initiate AD are discussed. These include systemic inflammation, hyperactivation of the renin-angiotensin system, innate immune activation, oxidative stress, and direct viral damage. It has been shown that increased expression of angiotensin-renin receptors (ACE2) may be a risk factor for COVID-19 in patients with AD. When entering the central nervous system, the SARS-CoV-2 virus can directly activate glial cell-mediated immune responses, which in turn can lead to the accumulation of beta-amyloid and the subsequent onset or progression of current AD. The involvement of inflammatory biomarkers, including interleukins (IL): IL6, IL1, as well as galectin-3, as a link between COVID-19 and AD is discussed. The rationale for the use of memantine (akatinol memantine) in patients with COVID-19 in order to prevent the development of cognitive deficits is discussed. Memantine has been shown to have a positive effect on neuroinflammatory processes in the onset or exacerbation of cognitive deficits, in reducing cerebral vasospasm and endothelial dysfunction in viral infections. Memantine therapy may improve everyday activity and reduce the risk of severe SARS-CoV-2 infection.Copyright © 2022 Ima-Press Publishing House. All rights reserved.

7.
J Mol Cell Biol ; 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2314218

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a ß-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. In this study, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including immortalized AECs and primary AECs cultured at the air-liquid interface. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an angiotensin-converting enzyme 2 (ACE2)-dependent manner, enhancing the binding of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induced the expression of key pro-inflammatory programs in AECs including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.

8.
Int J Mol Sci ; 24(9)2023 Apr 22.
Article in English | MEDLINE | ID: covidwho-2318337

ABSTRACT

Galectin-3 is a beta-galactoside-binding lectin involved in inflammation and lung fibrosis and postulated to enhance thrombosis. In COVID-19, it is considered to be a prognostic marker of severity. The aim of this study was to evaluate whether galectin-3 is associated with thrombogenicity in COVID-19. Patients with moderate-to-severe COVID-19 (COVpos; n = 55) and patients with acute respiratory diseases, but without COVID-19 (COVneg; n = 35), were included in the study. We measured the amount of galectin-3, as well as other platelet and coagulation markers, and correlated galectin-3 levels with these markers of thrombogenicity and with the SOFA Score values. We found that galectin-3 levels, as well as von Willebrand Factor (vWF), antithrombin and tissue plasminogen activator levels, were higher in the COVpos than they were in the COVneg cohort. Galectin-3 correlated positively with vWF, antithrombin and D-dimer in the COVpos cohort, but not in the COVneg cohort. Moreover, galactin-3 correlated also with clinical disease severity, as measured by the SOFA Score. In patients with acute respiratory diseases, galectin-3 can be considered as a marker not only for disease severity, but also for increased hypercoagulability. Whether galectin-3 might be a useful therapeutic target in COVID-19 needs to be assessed in future studies.


Subject(s)
COVID-19 , Humans , Antithrombins , COVID-19/complications , Galectin 3 , Tissue Plasminogen Activator , von Willebrand Factor
9.
European Respiratory Journal ; 60(Supplement 66):2653, 2022.
Article in English | EMBASE | ID: covidwho-2302078

ABSTRACT

Background: Galectin-3 is a beta-galactoside-binding lectin that has been described to be overexpressed in inflammation, atherosclerosis, and in myocardial fibrosis. In COVID-19, galectin-3 has been proposed as an important regulator of the inflammatory response and fibrosis processes. The role of galectin-3 as a platelet activator and thrombosis enhancer has been also recently described. However, the role of galectin-3 in the thrombotic risk in COVID-19 hasn't been studied extensively. Method(s): Patients with moderate to severe COVID-19 were included in the study. Hospitalized patients with acute respiratory diseases without COVID-19 were examined as controls. We compared the levels of galectin- 3, soluble ST2, tissue factor and tissue factor activity (TFa) as well as several other markers of increased thrombogenicity in both groups. The correlations between galectin-3 and coagulation as well as inflammation markers were assessed. The SOFA score was used as a marker for the clinical outcome. Result(s): 93 patients were included into the study of which 56 were SARS-CoV-2 positive (COV+) and 37 were SARS-CoV-2 negative controls (COV-). Galectin-3 levels were higher in the COV+ group (median 7.10 ng/ml [IQR 4.61-9.81] vs. 5.47 ng/ml [3.63-6.66] p=0.016) as well as the TFa (median 334.48 pM [115.19-632.58] vs. 134.02 pM [86.92- 206.66]) and the ST2 levels (median 5.49 ng/ml [2.40-9.28] vs. 2.19 ng/ml [0.66-3.91] p<0.001). We also observed a positive correlation between galectin-3 and IL-6 (r=0.559, p<0.001), ST2 (r=0.332, p=0.005), SOFA score (r=0.441, p=0.003), von Willebrand factor (r=0.401, p<0.001), plasminogen (r=0.361, p=0.001), antithrombin (r=0.453, p<0.001), and Ddimer (r=0.377, p=0.001). Conclusion(s): In patients with acute respiratory diseases, especially with COVID-19, galectin-3 is a marker for increased hypercoagulability and worse clinical outcome. Galactin-3 might be a useful therapeutic target for patients with COVID-19.

10.
World Journal of Dentistry ; 14(1):3-8, 2023.
Article in English | Scopus | ID: covidwho-2300181

ABSTRACT

Aim: To evaluate and compare the salivary galectin-3 (Gal-3) level in chronic periodontitis patients, coronavirus disease 2019 (COVID-19) patients, and patients with COVID-19 + periodontitis and thus determining the risk of periodontitis in increasing the severity of COVID-19 infection. Materials and methods: For the present study, a total of 77 participants were recruited to the study with 20 healthy controls (group I), 20 patients with chronic generalized periodontitis (group II), 19 COVID-19 patients (group III), and 18 with COVID-19 and periodontitis (group IV). Demographic characteristics and periodontal clinical parameters like plaque index (PI), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded for all patients. Saliva samples were collected and Gal-3 levels were assessed using enzyme-linked immunosorbent assay (ELISA) kit. One-way analysis of variance (ANOVA) analysis and Tukey's honest significant difference post hoc tests were carried out for data analysis. Results: Group IV patients had a higher concentration of salivary Gal-3 (15.50 ng/mL) than that of group III (10.247 ng/mL) and group II (12.340 ng/mL), and the mean difference in Gal-3 level was statistically significant with the p-value 0.000. The mean PPD, CAL, and PI were significantly high in groups II and IV compared to groups I and II with a p-value of 0.000. Conclusion: The result of the present study showed that patients with periodontitis and periodontitis + COVID-19 presented significant higher salivary Gal-3 levels in comparison with COVID-19 patients and healthy subjects. Thus periodontitis can be a risk factor in increasing the severity of COVID-19 infection. Clinical significance: This study was carried out to evaluate whether periodontitis is a risk factor for increasing the severity of COVID-19 infection. This study also highlights the importance of maintaining good oral hygiene and periodontal health in preventing COVID-19 severity. © The Author(s). 2023.

11.
Vaccines (Basel) ; 11(4)2023 Mar 25.
Article in English | MEDLINE | ID: covidwho-2303768

ABSTRACT

BACKGROUND: SARS-CoV-2 vaccines play an important role in reducing disease severity, hospitalization, and death, although they failed to prevent the transmission of SARS-CoV-2 variants. Therefore, an effective inhibitor of galectin-3 (Gal-3) could be used to treat and prevent the transmission of COVID-19. ProLectin-M (PL-M), a Gal-3 antagonist, was shown to interact with Gal-3 and thereby prevent cellular entry of SARS-CoV-2 in previous studies. AIM: The present study aimed to further evaluate the therapeutic effect of PL-M tablets in 34 subjects with COVID-19. METHODS: The efficacy of PL-M was evaluated in a randomized, double-blind, placebo-controlled clinical study in patients with mild to moderately severe COVID-19. Primary endpoints included changes in the absolute RT-PCR Ct values of the nucleocapsid and open reading frame (ORF) genes from baseline to days 3 and 7. The incidence of adverse events, changes in blood biochemistry, inflammatory biomarkers, and levels of antibodies against COVID-19 were also evaluated as part of the safety evaluation. RESULTS: PL-M treatment significantly (p = 0.001) increased RT-PCR cycle counts for N and ORF genes on days 3 (Ct values 32.09 ± 2.39 and 30.69 ± 3.38, respectively) and 7 (Ct values 34.91 ± 0.39 and 34.85 ± 0.61, respectively) compared to a placebo treatment. On day 3, 14 subjects in the PL-M group had cycle counts for the N gene above the cut-off value of 29 (target cycle count 29), whereas on day 7, all subjects had cycle counts above the cut-off value. Ct values in placebo subjects were consistently less than 29, and no placebo subjects were RT-PCR-negative until day 7. Most of the symptoms disappeared completely after receiving PL-M treatment for 7 days in more patients compared to the placebo group. CONCLUSION: PL-M is safe and effective for clinical use in reducing viral loads and promoting rapid viral clearance in COVID-19 patients by inhibiting SARS-CoV-2 entry into cells through the inhibition of Gal-3.

12.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2270378

ABSTRACT

Availability of well-tolerated novel agents that can slow or stop disease progression and improve quality of life remain an unmet medical need in IPF management. GB0139, a novel inhaled galectin-3 inhibitor, has shown good tolerability and antifibrotic potential via changes in biomarkers associated with IPF progression in an animal model (Delaine, T. et al. Chembiochem 2016;17:1759-70) and a Phase I study (Hirani, N. et al. Eur Respir J 2021;57(5):2002559) in healthy participants and IPF patients. We report the design of a Phase IIb study of GB0139 in IPF. This randomised, double-blind, placebo-controlled, parallel-group, multicentre study (NCT03832946) was initiated in April 2019. The primary endpoint is rate of decline in forced vital capacity (FVC) over 52 weeks. Key secondary endpoints are proportion of participants with an absolute decline from baseline in FVC % predicted of <=10%, change from baseline in St. George's Respiratory Questionnaire total score, time to first respiratory-related hospitalisation, and time to death (all-causes). Systemic GB0139 pharmacokinetics are included as an exploratory endpoint. Despite the COVID-19 pandemic, study recruitment has continued in ~100 centres across 15 countries, with over 400 participants randomised as of February 2022. Initially, participants treated with or without standard of care (SOC) were included. Following a protocol amendment in 2021, the current target is to randomise 141 participants who are not treated with SOC, with study completion in mid-2023.

13.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2253285

ABSTRACT

Introduction: "Long COVID" is defined by the persistence of symptoms after 4-12 weeks from COVID-19 disease. Data comparing different clinical phenotypes according to COVID-19 severity are still scanty. Aims and objectives: We aimed to identify different clinical phenotypes of post-COVID syndrome according to the level of respiratory support used. Method(s): We enrolled 309 patients who previously suffered from COVID-19 disease. All patients performed routine blood tests, arterial blood gas analysis, 6 minute walking test and body plethysmography. Then, we assigned each patient to a "severity group" according to the respiratory support needed during COVID-19 disease. Severity group 0: no respiratory support needed Severity group 1: oxygen only Severity group 2: positive airway pressure (CPAP or NIV) Severity group 3: Invasive Mechanical Ventilation (IMV) Results: Patients belonging to Group 0 experienced less fatigue (p=0.004) and mood disorders (p=0.007) compared to the other groups. Group 0 and 3 reported less frequently insomnia (p<0.0001). Hospitalized patients developed sleep and mood disorders during hospitalization due to several factors (fear, acoustic/visual triggers ect.). Patients who underwent IMV, instead, were completely sedated for the entire course of the acute phase of the disease, not being exposed to these triggers. Among blood markers, only Galectin-3 (p=0.004) and IL6 (p=0.004) had significant lower serum concentrations in patients belonging to Group 0, confirming their lower inflammatory status Conclusion(s): Awake hospitalization seems to deeply affect post-COVID sequelae in several patients.

14.
Front Immunol ; 14: 1131379, 2023.
Article in English | MEDLINE | ID: covidwho-2277487

ABSTRACT

Natural killer (NK) cells are a potent innate source of cytokines and cytoplasmic granules. Their effector functions are tightly synchronized by the balance between the stimulatory and inhibitory receptors. Here, we quantified the proportion of NK cells and the surface presence of Galectin-9 (Gal-9) from the bone marrow, blood, liver, spleen, and lungs of adult and neonatal mice. We also examined the effector functions of Gal-9+NK cells compared with their Gal-9- counterparts. Our results revealed that Gal-9+NK cells are more abundant in tissues, in particular, in the liver than in the blood and bone marrow. We found Gal-9 presence was associated with enhanced cytotoxic effector molecules granzyme B (GzmB) and perforin expression. Likewise, Gal-9 expressing NK cells displayed greater IFN-γ and TNF-α expression than their negative counterparts under hemostatic circumstances. Notably, the expansion of Gal-9+NK cells in the spleen of mice infected with E. coli implies that Gal-9+NK cells may provide a protective role against infection. Similarly, we found the expansion of Gal-9+NK cells in the spleen and tumor tissues of melanoma B16-F10 mice. Mechanistically, our results revealed the interaction of Gal-9 with CD44 as noted by their co-expression/co-localization. Subsequently, this interaction resulted in enhanced expression of Phospho-LCK, ERK, Akt, MAPK, and mTOR in NK cells. Moreover, we found Gal-9+NK cells exhibited an activated phenotype as evidenced by increased CD69, CD25, and Sca-1 but reduced KLRG1 expression. Likewise, we found Gal-9 preferentially interacts with CD44high in human NK cells. Despite this interaction, we noted a dichotomy in terms of effector functions in NK cells from COVID-19 patients. We observed that the presence of Gal-9 on NK cells resulted in a greater IFN-γ expression without any changes in cytolytic molecule expression in these patients. These observations suggest differences in Gal-9+NK cell effector functions between mice and humans that should be considered in different physiological and pathological conditions. Therefore, our results highlight the important role of Gal-9 via CD44 in NK cell activation, which suggests Gal-9 is a potential new avenue for the development of therapeutic approaches to modulate NK cell effector functions.


Subject(s)
COVID-19 , Melanoma , Adult , Humans , Mice , Animals , Escherichia coli , COVID-19/metabolism , Killer Cells, Natural/metabolism , Galectins/metabolism , Melanoma/metabolism , Hyaluronan Receptors/metabolism
15.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: covidwho-2276265

ABSTRACT

Inflammatory bowel diseases (IBD), comprising Crohn's disease (CD) and Ulcerative Colitis (UC), are multifactorial disorders characterized by a chronic inflammatory status with the secretion of cytokines and immune mediators. Biologic drugs targeting pro-inflammatory cytokines, such as infliximab, are broadly used in the treatment of IBD patients, but some patients lose responsiveness after an initial success. The research into new biomarkers is crucial for advancing personalized therapies and monitoring the response to biologics. The aim of this single center, observational study is to analyze the relationship between serum levels of 90K/Mac-2 BP and the response to infliximab, in a cohort of 48 IBD patients (30 CD and 18 UC), enrolled from February 2017 to December 2018. In our IBD cohort, high 90K serum levels were found at baseline in patients who then developed anti-infliximab antibodies at the fifth infusion (22 weeks after the first), becoming non-responders (9.76 ± 4.65 µg/mL compared to 6.53 ± 3.29 µg/mL in responder patients, p = 0.005). This difference was significant in the total cohort and in CD, but not significant in UC. We then analyzed the relationship between serum levels of 90K, C-reactive protein (CRP), and Fecal calprotectin. A significant positive correlation was found at baseline between 90K and CRP, the most common serum inflammation marker (R = 0.42, p = 0.0032). We concluded that circulating 90K could be considered a new non-invasive biomarker for monitoring the response to infliximab. Furthermore, 90K serum level determination, before the first infliximab infusion, in association with other inflammatory markers such as CRP, could assist in the choice of biologics for the treatment of IBD patients, thereby obviating the need for a drug switch due to loss of response, and so improving clinical practice and patient care.


Subject(s)
Biological Products , Colitis, Ulcerative , Crohn Disease , Infliximab , Humans , Biological Products/therapeutic use , Biomarkers , C-Reactive Protein/metabolism , Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , Cytokines/therapeutic use , Infliximab/therapeutic use
16.
Front Immunol ; 14: 1127247, 2023.
Article in English | MEDLINE | ID: covidwho-2251662

ABSTRACT

Background: Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. Methods: International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). Results: A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. Conclusion: Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.


Subject(s)
COVID-19 , Humans , Biomarkers , Galectins/metabolism , Benzamides
17.
Handb Exp Pharmacol ; 2023 Feb 11.
Article in English | MEDLINE | ID: covidwho-2242836

ABSTRACT

CaV1.2 calcium channel is the primary conduit for Ca2+ influx into cardiac and smooth muscles that underscores its importance in the pathogenesis of hypertension, atherosclerosis, myocardial infarction, and heart failure. But, a few controversies still remain. Therefore, exploring new ways to modulate CaV1.2 channel activity will augment the arsenal of CaV1.2 channel-based therapeutics for treatment of cardiovascular diseases. Here, we will mainly introduce a couple of emerging CaV1.2 channel interacting proteins, such as Galectin-1 and Cereblon, and discuss their roles in hypertension and heart failure through fine-tuning CaV1.2 channel activity. Of current interest, we will also evaluate the implication of the role of CaV1.2 channel in SARS-CoV-2 infection and the potential treatments of COVID-19-related cardiovascular symptoms.

18.
Am J Respir Crit Care Med ; 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2234791
19.
Am J Respir Crit Care Med ; 2022 Aug 16.
Article in English | MEDLINE | ID: covidwho-2230264

ABSTRACT

RATIONALE: High circulating galectin-3 is associated with poor outcomes in patients with COVID-19. We hypothesised that GB0139, a potent inhaled thiodigalactoside galectin-3 inhibitor with anti-inflammatory and antifibrotic actions, would be safely and effectively delivered in COVID-19 pneumonitis. OBJECTIVES: Primary outcomes were safety and tolerability of inhaled GB0139 as an add-on therapy for patients hospitalised with COVID-19 pneumonitis. METHODS: We present the findings of two arms of a phase Ib/IIa randomised controlled platform trial in hospitalised patients with confirmed COVID-19 pneumonitis. Patients received standard of care (SoC) or SoC plus 10 mg inhaled GB0139 twice daily for 48 hours, then once daily for up to 14 days or discharge. RESULTS: Data are reported from 41 patients, 20 of which were assigned randomly to receive GB0139. PRIMARY OUTCOMES: the GB0139 group experienced no treatment-related serious adverse events. Incidences of adverse events were similar between treatment arms (40 with GB0139+SoC vs 35 with SoC). SECONDARY OUTCOMES: plasma GB0139 was measurable in all patients after inhaled exposure, and demonstrated target engagement with decreased circulating galectin (overall treatment effect post-hoc ANCOVA over days 2-7: p=0.0099 vs SoC). Plasma biomarkers associated with inflammation, fibrosis, coagulopathy and major organ function were evaluated. CONCLUSIONS: In COVID pneumonitis, inhaled GB013 was well-tolerated, achieved clinically relevant plasma concentrations with target engagement. The data support larger clinical trials to determine clinical efficacy. Clinical trial registration available at www. CLINICALTRIALS: gov, ID: NCT04473053. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

20.
Horm Mol Biol Clin Investig ; 44(2): 199-206, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2197323

ABSTRACT

OBJECTIVES: Sedentary life style separated during COVID-19 pandemic. Patients with cardiovascular diseases (CVD) are vulnerable with sedentary life style. Therefore, the aim of this study was to investigate the effect of 8 weeks of combined and high intensity interval training (HIIT) on C Reactive protein, galectin-3, leptin, fibrinogen and insulin resistance index in coronary heart disease after COVID-19. METHODS: Thirty-six cardiovascular patients (55.14 ± 1.4 years, 78.6 ± 5.1 kg) were divided into three groups of combined exercise (n=13), HIIT (n=12) and control group (n=11). Combined exercise consisted of aerobic (4 weeks) and aerobic + HIIT exercise (4 weeks), three sessions per weeks. The protocol of the HIIT group included performing high intensity interval training, three sessions per weeks for 8 weeks. Blood samples were taken 24 h before the first training session and 48 h after the last training. C Reactive protein (CRP), galectin-3, leptin, fibrinogen measured with ELISA kit. RESULTS: CRP, galectin-3 and fibrinogen decreased significantly after 8 weeks of combined training and HIIT (compare to pre-test). Also, insulin resistance index after 8 weeks of combined exercise showed a significant decrease compare to pre-test (p<0.05). After 8 weeks, CRP, galectin-3 and insulin resistance significantly decreased compare to control group (p<0.05). CONCLUSIONS: In the patient with CVD, combined exercise training may be more effective than HIIT in reducing metabolic and heart risk factors after an epidemic such as COVID-19. However, change of leptin need to more studies.


Subject(s)
COVID-19 , Cardiovascular Diseases , Coronary Disease , Insulin Resistance , Humans , Leptin , C-Reactive Protein , Galectin 3 , Pandemics , Exercise , Inflammation , Insulin , Risk Factors , Fibrinogen
SELECTION OF CITATIONS
SEARCH DETAIL